

Thematic urban ecosystem accounts: asset value of the regulating services from trees in Oslo

Objectives

Demonstrate the integration of extent-condition accounts for urban trees with modeling of regulating ecosystem services and their asset values for different urban planning and policy purposes

Test value generalization in urban ecosystem accounting - infer asset value for a whole city accounting area with only partial asset condition data, using machine learning and Bayesian networks

Source: https://transect.org/

Source: Hanssen et al. 2019

Methods

Asset values Extent-condition Benefits Geodata Ecosystem services Tree heights Lidar data Hugin QGIS plugin spatial value (condition) generalization to all urban canopy Urban tree canopy Terrain, extent: 406 000 406 000 canopies (2014) maps canopy objects 90% Bayesian network of iTree Eco Regulation plan assessment C.I. Air pollution model input-output per tree Precipitation Carbon

iTree Eco regulating services model estimates per tree

	Average ES supply per tree	Average monetary value per tree
Removed air pollution	0.8 kg/year	200 NOK/year
Avoided stormwater unoff	1 m3/year	9 NOK/year
equestrated carbon	8 kg/year	3 NOK/year
stored carbon	385 kg	-
Building energy savings	1 kWh/year	2 NOK/year
otal annual mon. value	-	220 NOK/year
Vlean asset value (NPV)	-	12 414 NOK

Source: Cimburova and Barton 2021

Bayesian network emulation of iTree Eco model input-output variables

Crown area (m2) Asset value per canopy area

Results

Awareness raising Estimated median asset value of regulating services provided by all tree canopy of Oslo's built zone ca. NOK 5,4 billion (2014) (€ 635 million, or equivalent to ca. 0.4% of total residential asset value in Oslo)

Regulation plan assessment

Insignificant net loss in tree canopy extent in suburban plan area 2011-2017 due to loss of taller trees being compensated in extent (but not condition) by smaller tree plantings. Municipal regulation of suburban infill and tree felling permits were insufficient to avoid the loss of greenviews from large trees, while the net effect on regulating services was negligeable.

A share as	See Hand	Asset value of regulating services per tree	MONETARY ASSET ACCOUNT				(SMÅHUSPLAN S	SUBURBS - TREES				
	1 - 1 - 1 - C	 < 5.000 NOK 5.000 - 5.500 NOK 		Tree height (ele	vation bands)							
		 5.500 - 6.000 NOK 6.000 - 7.000 NOK 		2.5-5m	5-10m	10-15m	15-20m	20-25m	25-30m	30-35m	35-40m	Total
T-Still in the office		 7.000 - 10.000 NOK 10.000 - 12.000 NOK 	Expected Asset value (NOK/m2)	170	146	121	132	121	123	281	433	
		 12.000 - 17.000 NOK 17.000 - 25.000 NOK 	E(Total 2011)(NOK)	9 000 000	139 000 000	182 000 000	268 000 000	186 000 000	67 000 000	29 000 000	6 000 000	887 000 000
		> 25.000 NOK	E(Additions) (NOK)	14 000 000	118 000 000	19 000 000	-	-	-	-	1 000 000	151 000 000
		A	E(Losses) (NOK)	-	- 11 000 000	- 2 000 000	- 30 000 000	- 44 000 000 -	43 000 000 -	· 21 000 000 ·	- 5 000 000 -	156 000 000
		0 2 4 km	E(Total 2017(NOK)	23 000 000	247 000 000	198 000 000	239 000 000	142 000 000	24 000 000	7 000 000	2 000 000	883 000 000
	1 5	.I VY	E (Change 2011-2017)(NOK)	14 000 000	108 000 000	16 000 000	- 30 000 000 -	- 44 000 000 -	43 000 000 -	21 000 000	- 4 000 000 -	4 000 000

Conclusions

- Combined ecosystem extent-condition accounts can represent vegetation's 3D structure needed to predict regulating services using iTree Eco.
- Machine learning and Bayesian networks (BN) can be used to tackle missing data in value transfer / generalization from a known sample to partial data on assets in a wider accounting area. BNs provide documentation of inference uncertainty in ecosystem accounting.
- Small net aggregate changes in ecosystem extent during an accounting period may conceal large
 variation in ecosystem condition affecting the spatial distribution of ecosystem services and their benefits

Authors

David N. Barton, Zofie Cimburova, Frank Hanssen

Affiliations

Norwegian Institute of Nature Research(NINA)